
ShaderConv
Example pixel shader to TSS/TexEnv conversion.

Copyright © 2003-2007 Chris Dragan. All rights reserved.

Contact: chris@dragan.name

1 Abstract

ShaderConv is a simple utility allowing you to type a pixel shader version 1.0 through 1.3

(Direct3D 9 supports at least version 1.1) and convert it into either Direct3D Texture Stage

State pipeline instructions or OpenGL Texture Environment setup.

2 Direct3D TSS implementation

On PC, pixel shaders are available since the DX8-capable hardware. Older hardware that

supports multitexturing can be handled by Direct3D through Texture Stage State pipeline. The

TSS pipeline is a set of configurable modules, much like texture units in OpenGL. Each module

can execute an assigned function. A function is assigned to a stage separately on color and

alpha pipelines. Functions take two or three arguments and return result for subsequent

stages.

ShaderConvD3D tries to convert ps.1.0-1.3 binary code to TSS pipeline setup. However, the

TSS functionality is very limited and the support for certain combinations differs between

graphics adapters. Thus not all pixel shaders can be converted.

The following registers are available to the TSS implementation:

Register D3DTA Description

Valid source registers

r0 CURRENT The main register which is passed between texture stages.

r1 TEMP Temporary register. Not supported on some older adapters.

v0 DIFFUSE Diffuse color.

v1 SPECULAR Specular color. Not supported on some older adapters.

c0 TFACTOR A constant register set either inside or outside of the shader.

Some older adapters do not handle it properly.

t0-t3 TEXTURE Texture registers. A texture register tn can be used only on the

n-th stage (i.e. in the n+1-th arithmetic instruction pair).

Valid destination registers

r0 CURRENT

r1 TEMP

Note: Both pipes (color and alpha) must write to the same

register.

There are maximum 8 textures available (4 on Direct3D 8), due to nature of Direct3D. The

exact number of stages available depends on the graphics adapter and is equivalent to the

number of instruction pairs. If an instruction has no write mask, it is executed in exactly the

same way on both color and alpha pipes.

The following table lists instructions and argument combinations that can possibly evaluate to a valid TSS pipeline setup. Some instructions

support free swapping of the first and second source arguments (indicated in Swap column).

Instruction D3DTOP Swap Remarks

def c0, R, G, B, A

tex tn

texbem tn, tn-1 BUMPENVMAP There must be no arithmetic instruction on stage n-1.

texbeml tn, tn-1 BUMPENVMAPLUMINANCE There must be no arithmetic instruction on stage n-1.

mov rn, arg1 SELECTARG1 or SELECTARG2 D3DTOP instruction is chosen based on argument.

add rn, arg1, arg2 ADD YES

add rn, arg1, arg2_bias ADDSIGNED YES Exactly one argument must have the _bias modifier.

add_x2 rn, arg1, arg2_bias ADDSIGNED2X YES Exactly one argument must have the _bias modifier.

add rn, arg1, -arg2 SUBTRACT YES Exactly one argument must have the negation modifier.

sub rn, arg1, arg2 SUBTRACT Swapping arguments negates result.

mul rn, arg1, arg2 MODULATE YES

mul_x2 rn, arg1, arg2 MODULATE2X YES

mul_x4 rn, arg1, arg2 MODULATE4X YES

dp3 rn, arg1_bx2, arg2_bx2 DOTPRODUCT3 YES Write mask not supported. Both args must have _bx2.

mad rn, 1-arg1, arg2, arg1 ADDSMOOTH YES Exactly one instance of arg1 must be inverted.

mad rn, 1-tn.a, arg2, arg1 BLENDTEXTUREALPHAPM YES First source argument must be 1-tn.a (n for current stage).

mad rn.rgb, arg1.a, arg2, arg1 MODULATEALPHA_ADDCOLOR YES Write mask must be .rgb to evaluate to this instruction.

mad rn.rgb, arg1, arg2, arg1.a MODULATECOLOR_ADDALPHA YES Write mask must be .rgb to evaluate to this instruction.

mad rn.rgb, 1-arg1.a, arg2, arg1 MODULATEINVALPHA_ADDCOLOR YES Write mask must be .rgb to evaluate to this instruction.

mad rn.rgb, 1-arg1, arg2, arg1.a MODULATEINVCOLOR_ADDALPHA YES Write mask must be .rgb to evaluate to this instruction.

mad rn, arg1, arg2, arg0 MULTIPLYADD YES This is a generic case used if none of the above matches.

lrp rn, v0.a, arg1, arg2 BLENDDIFFUSEALPHA First source argument must be diffuse color alpha.

lrp rn, r0.a, arg1, arg2 BLENDCURRENTALPHA First source argument must be r0 alpha.

lrp rn, tn.a, arg1, arg2 BLENDTEXTUREALPHA First source argument must be texture alpha.

lrp rn, c0.a, arg1, arg2 BLENDFACTORALPHA First source argument must be constant alpha.

lrp rn, arg0, arg1, arg2 LERP This is a generic case used if none of the above matches.

 PREMODULATE Unsupported.

The following rules apply to the TSS implementation:

� The def instruction cannot be intermixed with other instructions. The tex* instructions also

cannot be intermixed with other instructions. These are actually rules of the pixel shader

assembly language.

� The texture sampling must be performed with the tex instructions before the tn registers

are used. The tex instructions must declare register sequentially in ascending order.

Further, arithmetic instruction forming the shader are explicitly assigned to TSS texture

stages in the order they were declared. Instructions can be paired (color vs. alpha pipe).

� No modifiers or masks are supported for the def, tex, texbem and texbeml instructions.

� Instruction modifiers (such as result scale) are not supported, except special cases which

include add_x2, mul_x2 and mul_x4.

� In instructions executing on color or both pipelines, the alpha replicate swizzle (.a) is fully

supported.

� In most instructions, the invert modifier (1-x) is supported. The exception are registers

with the _bias or _bx2 modifier, where negate (-x) can be used instead. (This is in fact a

rule of the shading assembly language.)

� The negate (-x) modifier can be used on exactly one argument of the add instruction if no

result multiplier or _bias modifier is used. In this case the add instruction evaluates to sub.

� In a few instruction, the _bias modifier is used to produce special result. It can be used in

exactly one operand of add or add_x2 instruction to produce signed result. The _bx2

modifier must be used on both source arguments of dp3 instruction.

� Two first source arguments of some instructions (indicated in the table above) can be

swapped producing exactly the same result. For example the two following instructions

produce the same TSS setup:
mad r0, 1-t1, r0, t1

mad r0, r0, 1-t1, t1

� Be careful when using the invert modifier in the mad instruction that is supposed to

produce D3DTOP_ADDSMOOTH instruction. Exactly one instance of the doubled argument

must be inverted. One of the following two instructions inverts texture color.
mad r0, 1-t1, r0, t1 ; Normal color

mad r0, t1, r0, 1-t1 ; Inverted color

� The support for dp3 instruction is very limited. No write mask can be used and the result

always goes to all four components (color as well as alpha). Both source arguments must

have the _bx2 modifier. Negate (instead of invert) and alpha replication modifiers can be

used. The performed calculation is as follows:

dest.r = dest.g = dest.b = dest.a = 4 * (src1.r – 0.5) * (src2.r – 0.5)

+ 4 * (src1.g – 0.5) * (src2.g – 0.5)

+ 4 * (src1.b – 0.5) * (src2.b – 0.5)

� There are several special cases for mad and lrp instructions, indicated in the table above.

They are used if the appropriate TSS instructions are supported by hardware and if the

combination of arguments is suitable. Otherwise the actual D3DTOP_MULTIPLYADD and

D3DTOP_LERP instructions are used.

� The following sample demonstrates the use of a texbem instruction (or alternatively

texbeml). The first stage is a regular modulation stage (texture * diffuse). In the second

stage bump map is sampled, so no arithmetic instruction can be executed. In the third

stage, the environment map is applied (added). The environment map texture coordinates

are perturbed by the values read from the bump map.
tex t0 ; Surface texture

tex t1 ; Bump map

texbem t2, t1 ; Environment map

; Stage 0 – Modulate texture with diffuse

mul r0.rgb, t0, v0

+ mov r0.a, t0

; Stage 1 – no-op (bump map is sampled)

; Stage 2 – Apply (add) bump-mapped environment map

add r0.rgb, r0, t2

� Remember, that some graphics adapters accept texture only as arg1 (in the table).

� The r1 (D3DTA_TEMP) register is rare on older hardware.

� The c0 (D3DTA_TFACTOR) does not always behave the way it is meant to behave. Some

graphics adapters (or drivers) handle it improperly. Unfortunately there is not direct means

to tell whether the c0 will work properly or not, until you see the results on the screen.

� Although the _sat modifier is not required, all arithmetic instructions behave as this

modifier was applied. This is because the all the registers can only hold values in range

[0,1]. If you want your code to work exactly the same on real pixel shaders and on TSS

implementation, use the _sat modifier. The modifier does not have to be used on

arithmetic instructions mov, mul (without scale) and lrp, because they always provide

result in range [0,1], provided that their operands are also in that range (as they always

are in TSS implementation).

� ShaderConvD3D tries to convert a pixel shader to TSS shader, given the current adapter

capabilities

3 OpenGL TexEnv implementation

OpenGL is the most popular 3D API. It’s easy to use and portable. Multitexturing in OpenGL is

provided through extensions, although some extensions are included as native part of newer

OpenGL versions.

In OpenGL multitexturing is provided through several cascaded configurable texture units. A

setup of a texture unit is known as texture environment. Originally, each unit supported only a

few basic hard-coded functions, namely GL_REPLACE, GL_MODULATE, GL_DECAL and

GL_BLEND. This functionality has been enhanced through the definition of GL_ADD and a

color-alpha decoupled GL_COMBINE, that introduces several useful functions.

ShaderConvGL tries to convert ps.1.0-1.3 binary code to TexEnv pipeline setup. It also takes

advantage of a few vendor-specific extensions, namely GL_ATI_texture_env_combine3,

GL_ATI_envmap_bumpmap and GL_NV_texture_env_combine4.

The functionality is still very limited compared to the actual pixel shader assembly language,

thus not all pixel shaders can be successfully converted.

The following registers are available to the TexEnv implementation:

Register Source Description

Valid source registers

r0 GL_PREVIOUS The main register that is passed between texture units.

v0 GL_PRIMARY_COLOR Diffuse color.

c0, c1 GL_CONSTANT A constant register set either inside or outside of the

shader.

t0-t3 GL_TEXTURE Texture registers. A texture register tn can be used only

on the n-th unit (i.e. in the n+1-th instruction pair).

Valid destination registers

r0 CURRENT

The number of texture units is usually very limited, but due to the definition of pixel shader

assembly language, only maximum of four can be used. There can be defined two constant

colors, but only one constant register can be used in a single instruction pair.

The following table lists instructions and argument combinations that can possibly evaluate to a valid TexEnv pipeline setup. Some instructions

support free swapping of the first and second source arguments (indicated in Swap column).

Instruction GL constant Swap Remarks

def c0, R, G, B, A

tex tn

texbem tn, tn-1 BUMP_ENVMAP_ATI There must be no arithmetic instruction on stage n-1.

mov r0, tn REPLACE (TEXTURE_ENV_MODE)

mul r0, tn, r0 MODULATE (TEXTURE_ENV_MODE) r0 must be replaced with v0 if this is the first instruction.

 lrp r0.rgb, tn.a, tn, r0

+mov r0.a, r0

DECAL (TEXTURE_ENV_MODE) r0 must be replaced with v0 if this is the first instruction.

 lrp r0.rgb, tn, c0, r0

+mul r0.a, tn, r0

BLEND (TEXTURE_ENV_MODE) r0 must be replaced with v0 if this is the first instruction.

 add r0.rgb, tn, r0

+mul r0.a, tn, r0

ADD (TEXTURE_ENV_MODE) r0 must be replaced with v0 if this is the first instruction.

mov r0, arg0 REPLACE

add r0, arg0, arg1 ADD YES

add r0, arg0, arg1_bias ADD_SIGNED YES Exactly one argument must have the bias modifier.

add r0, arg0, -arg1 SUBTRACT YES Exactly one argument must have the negation modifier.

sub r0, arg0, arg1 SUBTRACT Swapping arguments negates result.

mul r0, arg0, arg1 MODULATE YES

lrp r0, arg2, arg0, arg1 INTERPOLATE

dp3 r0.rgb, arg0_bx2, arg1_bx2 DOT3_RGB YES Both args must have _bx2.

dp3 r0, arg0_bx2, arg1_bx2 DOT3_RGBA YES Write mask not supported. Both args must have _bx2.

mad r0, arg0, arg1, arg2 ADD (COMBINE4_NV) YES

mad r0, arg0, arg1, arg2_bias ADD_SIGNED (COMBINE4_NV) YES The last argument must have _bias.

mad r0, arg0, arg2, arg1 MODULATE_ADD_ATI YES

mad r0, arg0, arg2, arg1_bias MODULATE_SIGNED_ADD_ATI YES The last argument must have _bias.

mad r0, arg0, arg2, -arg1 MODULATE_SUBTRACT_ATI YES The last argument must be negated.

The following rules apply to the TexEnv implementation:

� The def instruction cannot be intermixed with other instructions. The tex* instructions also

cannot be intermixed with other instructions. These are actually rules of the pixel shader

assembly language.

� The texture sampling must be performed with the tex instructions before the tn registers

are used. The tex instructions must declare register sequentially in ascending order.

Further, arithmetic instruction forming the shader are explicitly assigned to TexEnv texture

units in the order they were declared. Instructions can be paired (color vs. alpha pipe).

� No modifiers or masks are supported for the def, tex and texbem instructions.

� Supported instruction modifiers include _x2, _x4 and optional _sat. The _sat modifier is in

fact ignored, and all instructions execute as it was used. It’s so because the actual color

storage in between texture units is clamped to [0,1].

� In instructions executing on color or both pipelines, the alpha replicate swizzle (.a) is fully

supported.

� In most instructions, the invert modifier (1-x) is supported. The exception are registers

with the _bias or _bx2 modifier, where negate (-x) can be used instead. (This is in fact a

rule of the shading assembly language.)

� The negate (-x) modifier can be used only in special cases, indicated in the table above.

� In a few instruction, the _bias modifier is used to produce special result. It can be used in

exactly one operand of add or mad instruction to produce signed result. The _bx2 modifier

must be used on both source arguments of dp3 instruction.

� Two first source arguments of some instructions (indicated in the table above) can be

swapped producing exactly the same result. For example the two following instructions

produce the same TexEnv setup:
mad r0, 1-t1, r0, t1

mad r0, r0, 1-t1, t1

� The support for dp3 instruction is very limited. The .a write mask cannot be used. Both

source arguments must have the _bx2 modifier. Negate (instead of invert) and alpha

replication modifiers can be used. The performed calculation is as follows:

dest.r = dest.g = dest.b [= dest.a] = 4 * (src1.r – 0.5) * (src2.r – 0.5)

+ 4 * (src1.g – 0.5) * (src2.g – 0.5)

+ 4 * (src1.b – 0.5) * (src2.b – 0.5)

� There are five special cases – the setup of the original OpenGL TexEnv pipeline. These are

set as GL_TEXTURE_ENV_MODE. Otherwise the instructions are set in GL_COMBINE mode,

or in GL_COMBINE4_NV mode in case of the NVidia extension for the mad instruction.

� The following sample demonstrates the use of a texbem instruction. The first unit performs

a regular modulation (texture * diffuse). The second unit samples a bump map, so no

arithmetic instruction can be executed. The third unit applies (adds) environment map. The

environment map texture coordinates are perturbed by the values read from the bump

map.
tex t0 ; Surface texture

tex t1 ; Bump map

texbem t2, t1 ; Environment map

; Stage 0 – GL_MODULATE

mul r0, t0, v0

; Stage 1 – no-op (bump map is sampled)

; Stage 2 – GL_COMBINE_RGB(GL_ADD)

add r0.rgb, r0, t2

� ShaderConvGL tries to convert a pixel shader to TexEnv shader, given the current adapter

capabilities

